您的位置首页 >生活资讯 >

叶戈罗夫定理逆定理叙述及证明(叶戈罗夫定理)

导读 您好,今天芳芳来为大家解答以上的问题。叶戈罗夫定理逆定理叙述及证明,叶戈罗夫定理相信很多小伙伴还不知道,现在让我们一起来看看吧!1、

您好,今天芳芳来为大家解答以上的问题。叶戈罗夫定理逆定理叙述及证明,叶戈罗夫定理相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、在测度论中,叶戈罗夫定理确立了一个可测函数的逐点收敛序列一致连续的条件。

2、这个定理以俄国物理学家和几何学家德米特里·叶戈罗夫命名,他在1911年出版了该定理。

3、 叶戈罗夫定理与紧支撑连续函数在一起,可以用来证明可积函数的卢津定理。

4、设( M, d)为一个可分度量空间(例如实数,度量为通常的距离 d( a, b)= | a− b|)。

5、给定某个测度空间( X,Σ,μ)上的 M-值可测函数的序列( f),以及一个有限μ-测度的可测子集 A,使得( f)在 A上μ-几乎处处收敛于极限函数 f,那么以下结果成立:对于每一个ε>0,都存在 A的一个可测子集 B,使得μ( B)<ε,且( f)在相对补集 A B上一致收敛于 f。

6、 在这里,μ( B)表示 B的μ-测度。

7、该定理说明,在 A上几乎处处逐点收敛,意味着除了在任意小测度的某个子集 B上外一致收敛。

8、这种收敛又称为几乎一致收敛。

本文就为大家分享到这里,希望小伙伴们会喜欢。

标签:

免责声明:本文由用户上传,如有侵权请联系删除!